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VIBRATING SCREENS
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SIZE CLASSIFICATION

It is always necessary to control the size characteristics of particulate material that is fed to process
equipment that separates the mineralogical components.  It is not possible within the production
environment to exercise precise control over the size of all particles in a population and, in most
cases, size classification equipment is designed to split a feed of particulate material into a coarse
and a fine product.  Occasionally one or two product streams of intermediate size may be produced
such as by a double or triple deck screen.  Probably the most common application of size
classification is its use to prevent oversize material leaving a comminution circuit.  Oversize material
is recycled to a comminution stage for further size reduction before passing to subsequent stages of
processing.

The most significant consideration when evaluating classification equipment is the lack of a clean
cut at a particular size.  Even the most efficient industrial size classifiers will pass a proportion of
oversize material and will retain a portion of undersize material.

Size classification equipment is also subject to capacity limitations and these must be considered
when evaluating the performance of new or existing classification equipment.  In fact older methods
of performance evaluation concentrate entirely on the capacity limitations.  However, more modern
procedures recognize that the efficiency of separation must also be considered if the performance
of a size classifier in a plant circuit is to be accurately evaluated. The procedures that follow take this
into account. 

There are essentially two types of classifier available for process operation: screens and classifiers
that rely on the variation of terminal settling velocities of particles of varying size when these are
immersed in a viscous fluid.  In general the former are used for the classification of drier material
at coarser sizes. 

4.1 Classification Based on Sieving -  Vibrating screens

The basic method of operation of a screen is very simple.  The screen presents a barrier to the
passage of oversize material while it readily passes undersize material.  It is only necessary to ensure
that each particle has an opportunity to reach the screen.  In practice each particle is given several
opportunities to pass through the screen.  Screens can be stationary or the screen can vibrate which
increases the rate of presentation of each particle and assists in moving oversize material over and
away from the screening surface. 

4.1.1 Models based on screen capacity

The traditional method of evaluation of screen performance is the use of a capacity measure.  This
represents the ability of the screen to accept and handle the feed tonnage of material.  The most
important assumption in this approach is that the capacity of a screen is directly proportional to its
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surface area so that the basic capacity is specified at tons of feed per hour per square meter of screen.
This quantity is represented by Iu.  The basic capacity of any screen is determined under standard
operating conditions using a predefined standard feed material.  As the nature of the feed material
changes and as the operating conditions change so the actual capacity of the screen changes - it will
increase for conditions less arduous than the standard and decrease for conditions more arduous than
the standard.  These modifications are represented by capacity factors which multiply the standard
unit screen capacity to get the actual screen capacity under conditions that the screen will actually
meet in its position in the operating plant

Rated screen feed capacity
 IuK1K2áá


 Iu�
i
Ki tons/hr m2 (4-1)

where the separate Ki are the capacity factors for deviations from the standard conditions with respect
to a number of individual conditions.

The basic unit capacity varies primarily with the size of the screen opening - screens with larger
openings being able to handle large quantities of feed material.  A typical relationship between Iu and
mesh size is

Iu 
 0.783h � 37 for h�25mm (4-2)


 20.0h0.33
	1.28 for h<25 mm (4-3)

where Iu is in tons/hr m2 and h is the mesh size in mms. Each screen manufacturer has its own basic
capacity-size relationships for its range of screens. The above expressions are only meant to define
a typical trend.

The individual capacity factors are provided by screen manufacturers in tabular or graphical form
although the availability of computers is encouraging the presentation of these factors in algebraic
form.  The following factors are typical for woven wire mesh screens.

The open area factor K1

The standard condition is usually 50% open area and the capacity is proportional to the open area
available.

K1 

% open area

50
(4-4)

For material having a bulk density less than 800 kg/m3 the standard open area is 60% rather than
50% and equation (4.4) should be modified accordingly.

The half-size factor K2

Feed that contains a large proportion of material that is considerably smaller than the screen mesh
size will be handled more easily by a screen.  The standard condition is defined as feed material
having 40% smaller than one half of the mesh size.  If the feed has more than 40% smaller than one
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half of the screen mesh size, the half-size factor will exceed unity and vice versa.

K2 
 2P F(0.5h) � 0.2 (4-5)

The oversize factor K3

A screen can handle a greater tonnage of feed material that contains large quantities of oversize
material because this material passes directly over the screen and need not be transmitted through
the mesh.  This is accounted for by the oversize factor K3 which has a value of unity for a standard
feed containing 25% oversize material.  This factor increases very quickly as the fraction of oversize
increases and is given by

K3 
 0.914 exp exp(4.22̄PF(h)	3.50) (4-6)

In equation (4.6)  is the fraction of material in the feed that has size greater than the screenP̄F(h)

mesh size h.  It is related to the cumulative size distribution function by

P̄ F(h) 
 1	P F(h) (4-8)

The bulk density factor K4

Denser materials will be transmitted more easily than lighter materials.  A factor K4 accounts for this
effect when bulk density differs from the standard of 1600 kg/m3

K4 


!B

1600
(4-9)

The deck position factor K5

Screens that are lower down in the deck receive undersize from the screen above and can handle less
material than a screen that takes fresh feed.  The capacity decreases with position according to
capacity factor K5

K5 
 1.1	0.1S (4-10)

where S represents the deck position; 1 for top deck, 2 for 2nd deck and so on.

The screen angle factor K6

The standard inclined screen has an angle of inclination of 15o.  Lower angles of inclination increase
the projected area of the screen aperture in the horizontal plane and the screen can handle a greater
load.  This is accounted for by capacity factor K6

K6 
 1.0	0.01(.	15) (4-11)

where . is the angle of inclination in degrees.

The wet screen factor K7

Screening at finer mesh sizes can be improved by spraying the screen load with water.  The factor
K7 accounts for this effect
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K7 
 1.0 � 2.4×10	4(25	h)2.5 for h �25mm


 1.0 for h >25mm
(4-12)

The aperture shape factor K8

The standard screen has square openings and
other shapes influence the capacity as shown in
the table.

Particle shape factor K9

Slabby and elongated particles are more difficult
to screen than particles that are essentially
isometric.  If the feed contains about 15% of
slabby or elongated particles K9 should be set at
0.9.  Larger amounts of this type of material
would give significant problems and would need
to be investigated specially.

The surface moisture factor K10

Surface moisture tends to make the particles
adhere and screen capacity is reduced.  Factor
K10 accounts for this and can be evaluated
from the table below.

4.1.2   Screen transmission efficiency
Ideally the screen should be able to transmit
all of the undersize material in the feed.  In
practice, however, not all of the undersize
material passes through the screen and the
fraction of the feed undersize that does pass
through is referred to as the screen efficiency.
The efficiency is determined primarily by the
actual feed loading on the screen relative to
the rated feed capacity as calculated by
equation (4.1).  The efficiency of transmission
decreases if the screen must handle feed in excess of 80% of the rated tonnage because the access
of individual particles to the screen surface is hindered to a greater or lesser degree.  The efficiency
also decreases as the actual feed tonnage falls below 80% of rated capacity because particles tend
to bounce on the lightly loaded screen and make fewer contacts with the screen surface.
If WF represents the actual feed tonnage, then the rating ratio is given by

Condition of feed K10

Wet, muddy or sticky material.
Wet surface quarried and material
from surface stockpiles with up to
14% moisture by volume.
Dry crushed material.
Naturally or artificially dried
material.

0.7
5
0.8
5

1.0
1.2
5

Table 2.2 Surface moisture capacity factor for
screens.

Shape of screen
opening

K8

Round
Square
2 to 1 rectangular
slot
3 to 1 rectangular
slot
4 to 1 rectangular
slot

0.8
1.0
1.15
1.2
1.25

Table 2.1 Screen capacity factor for different
apertures
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RR 

W F

Iu �
i
Ki × screen area (4-13)

and the efficiency of transmission is given by

e 
 0.95 	 0.25(RR	 0.8) 	 0.05(RR	 0.8)2 for RR � 0.8

 0.95 	 1.67(0.8	 RR)2 for RR < 0.8

(4-14)

The actual tonnage passed to the undersize stream is

W U

 ePF(h)W F (4-15)

Each size class smaller than the mesh size is subject to the same efficiency factor e so that the
particle size distribution in the underflow stream is calculated in discrete form as

p U
i 


epF
i W F

ePF(h)W F



p F
i

P F(h)
for dpi<h


 0 for dpi�h

(4-16)

where pi
U is the fraction of the underflow stream in the size class i and pi

F that fraction in the feed
stream.

The actual tonnage passed to the overflow stream is

W O

 (1	P F(h))W F

� (1	e)P F(h)W F


 W F(1	ePF(h))
(4-17)

and the discrete size distribution in the overflow stream is given by

p O
i 


(1	e)p F
i

(1	ePF(h))
for dp<h (4-18)




p F
i

1	ePF(h)
for dp�h (4-19)

The simple capacity model permits the calculation of the total screen area that is required for a
specific duty. The aspect ratio of the screen (length/width ratio) must be determined by considering
the depth of the bed of particles on the screen. An approximate guide is the restriction of the bed
depth at the discharge end to no more than 4 times the mesh size. The thickness of the bed is
determined by the total flowrate over the screen surface, the width of the screen, b, and the velocity
of travel of the material along the screen.
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tb 

W O

bu!b
(4-20)

where tb is the bed thickness, Wd the mass flowrate across the discharge end, b the screen width, u
the velocity of travel across the screen surface and !b the bulk density. The velocity of travel depends
primarily on the angle of inclination and the amplitude and mode of vibration.

4.2  The Classification Function

A more realistic description of the performance of a classification device is provided by the
classification function. This function defines the probability that an individual particle will enter the
oversize stream that leaves the classifier.  This function is also known as the partition function and
when shown graphically as the partition curve. It is a complicated function of the particle properties
and the classifying action of the particular device under consideration. The classification function
c(dpi) is defined as the mass fraction of material in size interval i in the feed which finally leaves in
the oversize stream.

Once the partition function is known, the size distribution in both overflow and underflow can be
calculated by a simple mass balance over the solids in size class i.

W Up U
i 
 (1	c(dpi))W Fp F

i (4-21)

W Op O
i 
 c(dpi)W

Fp F
i (4-22)

where the superscripts O, U and F refer to oversize, undersize and feed respectively.

The total flowrates of solid in the oversize and the undersize are given by

W U

 M

i

W Up U
i 
 M

i
(1	c(dpi))W

Fp F
i (4-23)

W O

 M

i

W Op O
i 
 M

i

c(dpi)W
Fp F

i (4-24)

p U
i 
 [1 	 c(dpi)]

W F

W U
p F

i 


[1 	 c(dpi)]p
F

i

M
i

[1 	 c(dpi)]p
F

i
(4-25)

p O
i 
 c(dpi)

W F

W O
p F

i 


c(dpi)p
F

i

M
i

c(dpi)p
F

i
(4-26)

These formulas are often written in terms of the total yield of solids to the overflow
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Ys 

W O

W F
(4-27)

p U
i 


(1	c(dpi))p
F

i

1	Ys

(4-28)

p O
i 


c(dpi)p
F

i

Ys

(4-29)

Ys 
 M
i

c(dpi)p
F

i (4-30)

4.2.1  The Karra model

The approach described in the previous section is the traditional method used for sizing screens.  Its
chief limitation is that the screen must be sized according to the amount of feed that is presented to
the screen.  A more logical approach is based on the amount of material that must be actually
transmitted by the screen to the underflow stream.  This approach has been developed by V.K. Karra
(CIM Bulletin, April 1979 pp. 168-171) into an effective description of how a screen may be
expected to perform during plant operation. 

The approach is similar to the traditional approach but is based on the capacity of the screen to
transmit undersize material proportional to the screen area.  As in the traditional method this basic
capacity is modified by a number of factors that allow for variations of the feed material and the
screen from the standard test conditions. 

Let A represent the basic capacity which is defined as the tonnage of undersize that a particular
screen can transmit per unit of screen surface area.  The basic capacity is increased or decreased
depending on the nature of the feed and conditions on the screen.  A number of capacity factors
allow for the amount of oversize in the feed (factor B), the amount of half size in the feed (factor C),
the location of the deck (factor D), factor for wet screening (factor E) and for material bulk density
(factor F).  These factors all have a value of unity at the nominal standard operating condition and
move down or up as the screening duty becomes more or less arduous. Karra has also recognized that
the amount of near-size material has a significant effect on the ability of the screen to transmit
undersize material and he has introduced a near-size capacity factor Gc.

The theoretical amount of undersize that can be transmitted by the screen is given by

Th 
 A.B.C.D.E.F.Gc × screen area (4-31)
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A screen will be well designed to handle its duty in the circuit if Th is approximately equal to the
quantity of undersize in the feed.  Each of the capacity factors is related to the quality of the feed and
to the type of screen.

Karra bases the screen performance on the effective throughfall aperture of the screen defined by

hT 
 (h�dw)cos�	dw (4-32)

where dW is the diameter of the wire and � is the angle of inclination of the deck.  Equation (4.32)
gives the effective aperture area projected onto the horizontal plane which is appropriate for particles
that must pass through the screen under gravity.

The basic capacity A.
The basic capacity is primarily determined by the mesh size of the screen with the effective
throughfall aperture being used as the appropriate measure of screen mesh size.

A 
 12.13h0.32
T 	 10.3 for hT < 51 mm (4-33)

A 
 0.34 hT � 14.41 for hT� 51 mm (4-34)

with hT in mm and A is in metric tons/hr m2.

The basic capacity will also depend on the open area of the screen used.  The basic capacity
calculated from equation (4.33) and (4.34) are applicable to standard industrial light-medium woven
wire mesh.  For other screen cloths and surfaces, A  must be adjusted in proportion to the open area.
The percent open area for light-medium wire mesh is related to the mesh size h by

OA 
 21.5 log10h � 37 (4-35)

with h in millimeters.

Thus capacity A must be adjusted to

A × actual % open area
OA

(4-36)

The oversize factor B

B 
 1.6 	 1.2P̄ F(hT) for P̄ F(hT)�0.87

B 
 4.275 	 4.25P̄ F(hT) for P̄ F(hT)>0.87
(4-37)

The half-size factor C
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C 
 0.7 � 1.2 P F(0.5hT) for P F(0.5hT)�0.3

C 
 2.053 P F(0.5hT)
0.564 for 0.3<P F(0.5hT)�0.55

C 
 3.35 P F(0.5hT)
1.37 for 0.55<P F(0.5hT) �0.8

C 
 5.0 P F(0.5hT)	1.5 for P F(0.5hT)>0.8

(4-38)

The deck location factor D

D 
 1.1 	 0.1 S (4-39)

where S = 1 for top deck, S = 2 for 2nd deck and so on

The wet screening factor E
Let T = 1.26 hT (hT in mm)

E = 1.0 for T < 1
E = T for 1 � T < 2
E = 1.5 + 0.25T for 2 � T < 4
E = 2.5 for 4 � T < 6
E = 3.25 - 0.125T for 6 � T < 10
E = 4.5 - 0.25T for 10 � T < 12
E = 2.1 - 0.05T for 12 � T < 16
E = 1.5 - 0.0125T for 16 � T < 24
E = 1.35 - 0.00625T for 24 � T < 32
E = 1.15 for T > 32

whenever the material is sprayed with water.

The bulk density factor F

F 


!B

1600
(4-40)

The near-size capacity factor Gc

The capacity of the screen is also affected by the presence of near-size material in the feed. The near-
size material in the feed is in the size range from 0.75hT to 1.25hT. Considerable quantities of near-
size material will inhibit the passage of undersize material through the screen.  The near-size
capacity factor can be evaluated from

Gc 
 0.975(1	 near	size fraction in feed)0.511

Gc 
 0.9751 	 P F(1.25hT) � P F(0.75hT)
0.511

(4-41)
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4.2.2 The screen classification function
In practice, not all of the undersize is transmitted because of various physical factors that impair the
efficiency of the screen.  This effect is described by the screen partition function.  Several standard
functional forms are available to describe this effect, and Karra uses the function

c(dp) 
 1 	 exp[	0.693(dp/d50)
5.9] (4-42)

which gives the efficiency of transfer of particles of size dp to oversize.

The parameter that will determine the screening efficiency is d50.  Values of d50 greater than the mesh
size give high efficiencies and vice-versa.

The actual d50 achieved will depend primarily on the effective throughfall aperture of the wire mesh
used on the screen, on a loading coefficient K defined by

K 

tons of undersize in the feed / unit of screen area

ABCDEF




W FP(hT)/screen area

ABCDEF

(4-43)

and on the near-size factor Gc.

Karra has found that experimental screening data are well represented by

d50

hT




Gc

K 0.148
(4-44)

d50 can be substituted in equations (4.42) and (4.21 - 4.26) to calculate the size distributions in the
two product streams.

p U
i 


[1	c(dpi)] p F
i

M
i

[1	c(dpi)] p F
i

(4-45)

p O
i 


c(dpi)p
F

i

M
i

c(dpi)p
F

i

(4-46)

The model provides a simulation of the actual performance of the screen in the circuit.  This
performance can be compared with the design capacity of the screen and the screen performance
evaluated.  In particular, the actual operating efficiency can be calculated from

simulated efficiency

tonnage transmitted to undersize

tonnage of undersize in feed
(4-47)
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M
i

[1	c(dpi)] p F
i

P F(h)

(4-48)

The effective utilization of the screen area can be calculated from

AUF 
 area utilization factor



tonnage transmitted to undersize

theoretical ability of the screen to pass undersize



W FP F(h)×simulated efficiency
A.B.C.D.E.F.Gc× screen area

(4-49)

An AUF equal to unity indicates that the screen capacity is exactly balanced to the required duty.
AUF > 1 indicates that the screen is overloaded while AUF < 1 indicates that the screen is
underloaded

A particular advantage of the Karra screen model is that no free parameters are required to be
estimated from operating data.

4.3  A Simple Kinetic Model for Screening

Screening can be considered to be a kinetic process because the rate at which solid particulate
material is transmitted through a screen is dependent on the nature of the screen, on the load that the
screen is carrying and on the nature and size of particles.  Obviously larger particles are transmitted
more slowly than small particles and so on.  The rate of transmission of particles through the screen
will vary from point to point on an actual screen because the load that the screen carries varies in the
direction of the material flow.  In general the rate of transmission depends primarily on the particle
size relative to the screen mesh size.

Observation of operating screens shows clearly that the screen action varies according to the load
on the screen.  Near the feed end, industrial screens are almost invariably heavily loaded so that the
particulate material forms a multilayer of particles on the surface.  As the particles move down the
screen surface, the smaller material falls through and the load on the screen surface decreases
steadily until only a monolayer of particles remain.  These two conditions are referred to as the
crowded and separated regimes respectively.

In the crowded condition, the undersize material must percolate through the upper layers of coarse
material before it has a chance to contact the screen and thus fall through.  Thus the rate of
transmission of material is a function of the size distribution in the particle layer immediately above
the screen surface.  On the crowded feed end of the screen, the screen, this layer is replenished by
downward percolation of undersize material through the upper layers of the bed. The net rate at
which particles of a particular size are transmitted through the screen is a function of the percolation
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Crowded region

Feed

Separated  region

Overs ize

Unders ize

L

L c

Figure 4.1  Varying rate of transmission of particles through a
wire mesh screen.

process as well as the screen transmission process

This model of the screening operation is illustrated in Figure 4.1

Let wi(l) = mass flowrate per unit width of screen of material in size interval i down the screen at
distance l from the feed end (kg/ms). wi(l) is related to the discrete size distribution density function

by wi(l) = W(l)pi(l) where W(l) is the total flow of material down the screen per unit width at position
l and the dependence of these functions on position is shown explicitly by the argument l.

If the rate of transmission of particles in size interval i is represented by r(dpi) kg/m2 s, a differential
mass balance gives

dwi(l )

dl

 	 r(dpi) (4-50)

This equation can be integrated if a model for the rate of transmission can be developed. 

The rate of transmission will be modeled differently under the crowded and separated conditions.
Accurate models for the crowded condition are complex since they must take into account both the
stratification process and the transmission process.  A more realistic model is developed in the next
section.  We assume here that the rate of transmission does not vary along the screen under crowded
conditions and that

r(dpi) 
 k(dpi)Mop F
i (4-51)

where Mo is the load on the screen in kg/m2 at the feed end.  There is some experimental evidence
that confirms the constant rate of transmission under crowded conditions. Soldinger M., Interrelation
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of Stratification and passage in the screening process.  Minerals Engineering 12, pp 497 -516, 1999.

The simplest model for the variation of k(dpi) with particle size is

k(dpi)

u



k0

u
1	

dpi

u
for dpi < h


 0 for dpi � h

where k0/u is the operating parameter.  k0/u will depend on the mesh size and the fraction open area
and on other operating parameters such as vibration amplitude and frequency.

Equation (4.50) can be integrated immediately to give

wi(l) 
 wi(0) 	 r(dpi)l (4-53)

At the transition between the crowded regime and the separated regime l = Lc

wi(Lc) 
 wi(0) 	 r(dpi)Lc (4-54)



W F

b
p F

i 	 k(dpi )Mo p F
i Lc (4-55)

Let M(l) = total load per unit area of screen surface at a distance l from the feed end in kg/m2.
The flowrate down the screen W(l) is related to the load on the screen by

W(l) 
 M(l)u (4-56)

where u is the velocity at which material travels down the screen.

wi(Lc) 
 Mou p F
i 	 k(dpi )Mo p F

i Lc


 Mop F
i u	 k(dpi )Lc


 W Fp F
i 1	

k(dpi)

u
Lc

(4-57)


 Mop F
i u	k(dpi )Lc (4-58)

Lc can be defined as the position on the screen at which particles in the smallest size class just
become depleted

Lc 

u

k(dpN) (4-59)

Under separated conditions, the rate of transmission of particles if size dp is assumed to be
proportional to the amount of that material per unit area of screen surface
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dwi(l)

dl

 	s(dpi )M(l)pi(l) (4-60)

where
pi(l) =  the discrete particle size density function of the material on the screen at distance l from the
feed end.
s(dpi) = the specific rate of transmission for particles of size dpi   (sec-1)
wi(l) is related to M(l) by

wi(l ) 
 pi(l )M(l )u (4-61)

where u is the velocity at which the material travels down the screen surface

dwi(l)

dl

 	

s(dpi )

u
wi(l) (4-62)

This is easy to integrate and match the individual mass flowrates for each size interval at the
boundary between the crowded and separated regions

wi(l ) 
 wi(Lc)exp 	

s(dpi )

u
(l	Lc) (4-63)


 wi(0)	 r(dpi )Lc exp 	

s(dpi )

u
(l	Lc) (4-64)

The partition factor can be evaluated from equation (4.64)

c(dpi ) 


wi(L)

wi(0)


 1	
r(dpi )Lc

wi(0)
exp 	

s(dpi )

u
(L	Lc)

(4-65)

Ferrara et. al. (G. Ferrara, U. Preti and G.D. Schena.  International Journal of Mineral Processing 22
(1988) 193-222) have determined the specific rate constant s(dpi)/u in terms of the probability of
passage of a particle during a single contact with the screen.  This is usually computed as the ratio
of the area of the effective aperture to the total area of the screen.  In order to pass cleanly through
a square mesh opening a spherical particle must pass with its center within a square of side h-dp in
the center of the mesh opening.  Thus the probability of passage is given by
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Figure 4.2  Geometrical restrictions on the passage of a particle
through square-mesh screen
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(h	dp)
2

(h�dw)2



h2

(h�dw)2
1	

dp

h

2


 f0 1	
dp

h

2
(4-66)

where f0 is the fraction open area of the screen. This is illustrated in Figure 4.2.

Ferrara et. al.  suggest an empirical functional form

s(dpi )

u

 nf 1/2

0 1	
dpi

h

1

(4-67)

where 1 is a constant that should be close to 2. n is the number of presentations per unit length of
bed.  Equation (4.67) can be written

s(dpi )

u

 s502

1 1	
dpi

h

1

(4-68)

where s50 is the value of s(dpi)/u when the particle size is one half the mesh size.

Unfortunately there is very little data available on the value of the transmission rate for crowded
conditions, r(dp), and its variation with particle size and with conditions on the screen.  It is also
dependent on the size distribution in the feed.
 


