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ABSTRACT

The batch comminution equation for multicomponent mineral systems is a multidimensional
integrodifferential equation
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that cannot be solved analytically.  The phase space (g, D) is usually discretized and the equation
is formulated as
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Solutions to this discretized form of the equation are easy to generate provided that models for the
selection function Sij and the multicomponent breakage function bijkl are known. 

An assumption of random fracture provides an important simplification because, under the random
fracture assumption, the selection function is independent of the particle composition.  The random
fracture assumption has often been used by researchers who developed models for the prediction of
mineral liberation by comminution and the solution of the batch comminution equation under this
assumption was found to be
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A general solution to the batch comminution equation that does not rely on the random fracture
assumption is also derived in the paper and is given by
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The new solution was compared with experimental data obtained from a batch test on a difficult-to-
liberate ore.  The model was found to be reliable and the derived Andrews-Mika diagram is shown.

The derived models for the selection function and the Andrews-Mika diagram can be used to
simulate the effects of the non random fracture, and thus to assess their relative importance, and also
to simulate the behavior of the ore in continuous milling and concentrating circuits.

INTRODUCTION

The population balance equation for batch milling
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can be solved analytically (King, 1972, Nakajima and Tanaka, 1973) for a few specific selection and
breakage functions when it is not necessary to account for the liberation of the mineral phases during
comminution.  Practical solutions are usually generated using a finite collection of ordinary
differential equations that are generated by discretization of the size coordinate.
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When the ore is heterogeneous the liberation of the individual mineral phases becomes important
and the batch comminution equation must be modified accordingly.  The modifications that are
required to apply this equation to binary ores were comprehensively investigated by Andrews and
Mika in 1975 who wrote the equation in terms of the particle assay and the particle mass (a, m)
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In equation (3), F(a,m;t) is the fraction by mass in the mill charge at time t that consists of particles
having individual masses less than or equal to m and individual assays less than or equal to a.  The
cumulative breakage function B(a,m�,µ) is the fraction by mass of the progeny with essay � a and
mass � m that results from the fracture of a parent particle of mass µ and assay �.

Analytical solutions to equation (3) are not available except for systems that are severely and
unrealistically restricted.  Numerical methods are the only practical possibility for generating useful
solutions.  A convenient solution method is presented here.

THE ANDREWS-MIKA DIAGRAM AND ITS SIGNIFICANCE

The double integral in equation (3) is taken over a region R1 in the particle mass, particle
composition space.  This region contains all parent particles that can generate a progeny particle of
mass m and composition a.  The region R1 does not comprise the entire half space ) �m but is
restricted by mass conservation and mineralogical texture constraints.  The significance of these
restrictions was pointed out by Andrews and Mika in 1975 and the determination of these constraints
is important when solutions to equation (3) are generated.

Andrews and Mika established the following conservative bounds for the region R1

µ � m (4)

and

�µ � am
(1	 �)µ � (1	 a)m (5)

These bounds reflect the obvious requirement that the parent particle must be at least as large as any
of its progeny and that the mass of mineral in the parent particle must be at least as large as the mass
of mineral in any progeny particle.  R1 is bounded above by the mass of the largest particle in the mill
feed (mmax).  The region R1 is illustrated in Figure 1 where point A represents the composition and
mass of any progeny particle.  The boundaries of R1 never intersect the vertical axes at a = 0 and a
= 1.0 because of the obvious fact that a completely liberated parent cannot produce any unliberated
progeny.

A region R, complementary to R1, can also be defined.  If point A in Figure 1 represents the mass and
composition of a parent particle, region R is the attainable region for progeny that results when the
parent is broken in the mill.  R 1 is called the feeder region for progeny at point A and R is called the
attainable region from a parent at point A.  The boundaries of R are continuations of the boundary
lines of R1 and are obtained by reversing inequalities (4) and (5).
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m � µ (6)

and
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Unlike the boundaries of R1, those of R intersect the vertical axes a = 0 and a = 1 at points B and C
respectively.  These intersection points reflect the conservation law: “The mass of the largest
possible liberated progeny particle is equal to the mass of the mineral phase contained in the parent
particle”.  Point B is defined when this principle is applied to the gangue and point C when it is
applied to the mineral phase.  The segments BF and CG are attainable from the point A because a
particle of mass m and grade a can produce progeny consisting of pure gangue provided that the
mass of the liberated gangue particle is less than the mass of the gangue phase in the parent particle
(equal to (1-a)m).  Likewise a progeny particle consisting of pure mineral can be produced from a
parent particle at (a,m) if the mass of the liberated daughter is less then the mass of the mineral phase
in the parent.

In practice the particle-mass, particle-assay coordinate system is not practical for population balance
modeling applications and the particle-size, particle-composition system is used instead.  This
preference expresses the fact that it is much easier to classify particles on the basis of size than on
the basis of the mass of individual particles.  When particle size is used rather than particle mass,
equation (3) is written
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The Andrews-Mika diagram in the particle-size particle-composition space has the same essential
characteristics as that in the mass-composition space.  However, the inequalities (9) to (7) that define
the boundaries of the feeder and attainable regions cannot be written in precise form and the
following approximations are  used

g D3 � g1D13 (9)

for the mineral and

(1	g)D 3 � (1	g1)D13 (10)

for the gangue.
In fact these boundaries become fuzzy (in the sense of fuzzy set theory) because a population of
particles of equal mass or volume have a distribution of sizes if the particles are of irregular shape.
This fuzziness is neglected in this paper.

The constraints expressed by inequalities (9) and (10) are in most cases conservative and tighter
bounds on the regions R and R1 can be established by careful evaluation of experimental data.

To see this, consider point E in Figure 1.  This point reflects the principle that the largest completely
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liberated mineral progeny particle that can be formed cannot be larger than the single largest coherent
mineral grain in the parent particle.  The largest coherent grain is generally smaller than the total
volume of mineral phase in the parent depending on the mineralogical texture.  If the parent particle
contains more than one grain of mineral, the largest liberated progeny particle can be no larger than
the largest simple mineral grain in the parent particle.  If the texture is fine grained relative to the size
of the parent particle, no large completely liberated particle can result from breakage and the corner
E of the attainable region must lie well below point C and the upper boundaries of region R will lie
below lines AC and AB in Figure 1.

In addition to its important boundary structure, the Andrews-Mika diagram also has internal structure
which is defined as the value of the function

b(g,Dg1,D1) 

02B(g,Dg1,D1)

0g0D
(11)

This function describes the density of arrival of progeny particles at point (g,D) in R from breakage
of a parent at (g1,D1).  Because the cumulative function B(g,Dg1,D1) has step discontinuities at g
= 0 and g = 1, the function b( g,Dg1,D1) has Dirac delta functions at g = 0 and at g = 1.  The strength
of these delta functions represent the liberated gangue and mineral respectively.

The internal structure of the Andrews-Mika diagram is subject to additional constraints since in any
grinding mill the total amounts of each mineral over all the sizes are conserved.  A sufficient
condition that ensures phase conservation is
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 g1 for every g1 and D1 (12)

This condition is derived in the appendix.  This condition is particularly useful in the following form
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Before solutions of the batch comminution equation for multi-component materials can be generated,
the function b(g,Dg1,D1) must be available.  This requires a complete set of Andrews-Mika
diagrams for the ore in question.

DISCRETE PHASE SPACE

The integrodifferential equation (8) can be solved numerically using a comparatively coarse grid to
discretize the phase space.  Typically the size coordinate is discretized using a �2 geometrical
sequence and the particle grade is discretized into 12 classes - one for the liberated gangue, one for
the liberated mineral and 10 equally spaced intervals in the range from g = 0 to g = 1.

In the discrete form, equation (8) becomes
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In equation (14) i,j,k and l index the variables g, D, g1 and D1 respectively.  and  are the leftK �

l K ��

l

and right hand boundaries of region R1 for parent particles in size class l.   is the discretizedbijkl

version of the function .  Early attempts (Wiegel, 1976, Choi et. al.1988) to useb(g,Dg1,D1)
equation (14) foundered because of the complexity of the function .  Practical solutions werebijkl

developed only for the unrealistically simplified case of three particle compositions; liberated
mineral, liberated gangue and all unliberated particles lumped together.  This is commonly referred
to as the “A, A-B, B” model.  This model has not found much application in practice because it fails
to generate any really useful information about the liberation that is achieved during milling.

In practice it is convenient to decouple the size reduction process from the liberation process.  This
can be done by using the conditional breakage functions

bijkl 
 bj,kl bi,jkl (15)

where  is the fraction of material breaking from class k,l that reports to size class j.   is thebj,kl bi,jkl

conditional transfer coefficient from grade class k to grade class i given that the particle transfers
from size class l to size class j.   bi,jkl is usually represented as an Andrews-Mika diagram.  bj,kl and
bi,jkl are conditional distributions and must satisfy the conditions
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Typical examples of the discretized Andrews-Mika diagram are shown in Figures 2 and 3.  It is
important to realize that these represent just two of the many discrete Andrews-Mika diagrams that
are required to characterize any particular ore.  Figures 2 and 3 show a discretization over 19 size
classes and 12 grade classes which requires 19×12 = 228 separate Andrews-Mika diagrams, one for
each possible combination of k and l. In general a theoretical model of the Andrews-Mika diagram
is required to generate the appropriate matrices which can be stored before the solution to the batch
comminution equation is generated.  The Andrews-Mika diagrams in Figures 2 and 3 were generated
using a model for the attainable region that was developed by Schneider (1995).  A useful
approximation results when it is assumed that the Andrews-Mika diagram is normalized with respect
to particle size so that bi,jkl is a function only of the difference l-j  when the size scale is discretized
in geometric progression.  This is equivalent to a normalization based on the ratio of sizes.  This
approximation will be valid only over comparatively small size ranges. However, when this
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assumption is made, only twelve Andrews-Mika diagrams are required for a complete
characterization of the breakage process.  The two attainable regions for liberated parents are trivial
and easy to construct.  This leads to a manageable parameterization of the problem.

The attainable region is significantly easier to model than the feeder region because the attainable
region has such a clearly definable structure.  However the feeder regions can be synthesized from
a complete collection of attainable regions in the following way.  Let am,nuv represent the attainable
regions for parents at u,v .  Then the feeder regions are generated from

bi, jkl 
 ak, jil (18)

Once all the Andrews-Mika diagrams have been constructed for the ore in question, equation (15)
can be used to calculate the coefficients  from the size breakage function and solutions to thebijkl

batch comminution equation (14) can be addressed.

SOLUTION OF THE DISCRETE BATCH COMMINUTION EQUATION

The numerical solution of equations (14) is not difficult.  The differential equations can be integrated
numerically in sequential order starting with and then incrementing the index i over the range 1p11

to 12 for each successive value of the index j. 
 
The summation on the right hand side of equation (14) is taken over the region R1 in the Andrews-
Mika diagram. It is necessary to construct R1 from R or to design an algorithm that runs the
summation over R rather than R1. A suitable algorithm is not difficult to develop. (King, 1990, King
and Schneider, 1993).

When generating analytical solutions to equation (14), it is more convenient to construct R1 from R
and then exploit the linearity of the differential equations (14) to generate the general solution
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The coefficients in equation (19) are related to the selection and breakage functions and to the initial
conditions using the following recursion relationships
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Note that the summations in equation (22) run over the feeder regions and not over the attainable
regions.

This solution to equation (14) is based on the usual convention that breakage implies that all progeny
leave the size class of the parent particle.  The pathological case is occasionallySij 
 Smn

encountered in practice.  When it occurs, it is usually handled by making a slight adjustment to the
parameters that define the relationship between the specific rate of breakage and the particle size to
assure that no two values of  are exactly equal.Sij

Equation (19) represents a complete and convenient solution to the discrete version of the batch
comminution equation with liberation and this solution produces the size distribution as well as the
liberation distribution as a function of the time of grinding. 

SIMPLIFICATIONS OF THE SOLUTION DUE TO RANDOM FRACTURE

Several simplifying assumptions can be made that facilitate the generation of practical solutions and
which reduce the amount of experimental work that is necessary to characterize the coefficients Sij

and .bijkl

The random fracture assumption is often invoked because it simplifies any model of mineral
liberation.  Under this assumption the fracture pattern that results during comminution of any particle
is independent of the mineralogical composition and texture of the particle.   The random fracture
model leads to several useful simplifications of the multi-component batch comminution equation
and these are discussed in this section.

The following six conditions characterize random fracture.

1. No selective breakage.  The effects of unequal brittleness of the mineral phases give rise to a
number of different phenomena.  Firstly the minerals break selectively which manifests itself as  a
variation of the selection function with mineral type and therefore particle composition.  Selective
breakage depends on the flaw size distribution and the fracture toughness of the material in
accordance with the classic Griffiths model of fracture mechanics. Under the random fracture
assumption, the mineral phases are equally brittle and the specific rate of breakage  is thereforeSij

not a function of the composition of the parent particle.  Thus

Sij 
 Sj (23)
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which is a function only of the size of the parent particle.  With this condition the general solution
can now be written in terms of a smaller set of coefficients
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which can be evaluated recursively.

2. No differential breakage.   Differential breakage occurs when the size breakage function depends
on the composition of the parent particle. This phenomenon differs from preferential breakage
because it is function of the total composition and microstructural texture of the parent particle.
Particles that are made up of minerals having different physical properties will contain high internal
stresses Random fracture implies that differential breakage does not occur during comminution and
the size breakage function  is independent of the composition of the parent particle.  Thenbj,kl

equation (15) becomes

bijkl 
 bj, l bi, jkl (28)

3. No preferential breakage.   Preferential breakage occurs when crack branching occurs more
frequently in one mineral than in the others.  This leads to the appearance of the preferentially broken
mineral in the finer sizes after each elementary fracture event.  Under the assumption of random
fracture, no preferential breakage occurs and then the internal consistency condition (12) takes on
the simple form

M
12

i
1
gi bi, jkl 
 gk for all k and l. (29)

Equation (29) ensures that the discrete version of equation (13) is always satisfied.

4. No phase-boundary fracture.  Phase-boundary fracture is said to occur when cracks tend to
propagate preferentially along phase boundaries rather than across the phases.  Under the random
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fracture assumption no phase-boundary fracture occurs.  It is known (King, 1994) that phase-
boundary fracture does not influence liberation significantly and therefore no special provision is
made in the models of the attainable region to accommodate this effect.

5. No liberation by detachment (Gaudin, 1939, p77) When the grains of a particular mineral are
comparatively loosely bonded into the ore matrix, the mineral grains become detached from the ore
during grinding leading to significant liberation of the original mineral. These liberated mineral
grains are concentrated around the mineral “grain size” in the progeny of any elementary fracture
event.  This effect can be incorporated into the models of the attainable region by increasing the
concentration of the liberated mineral class in the regions of the mineral “grain-size”.   This would
show up for example as a local peak in the bars in the 100% grade class in the Andrews-Mika
diagram shown in Figure 2. In addition, the size breakage function must be modified to reflect the
greater arrival rate of progeny particles in this size range.  Liberation by detachment is an extreme
form of phase-boundary fracture and it influences the liberation characteristics profoundly when it
occurs.  

6. No boundary-region fracture.  The material in the neighborhood of a phase boundary can be
highly stressed if the elastic moduli of the minerals differ significantly.  This can lead to preferential
fracture of both phases in the region of a phase boundary which in turn can lead to the generation of
finer particles from that region.  This type of fracture produces the interesting result that finer
particles, originating from the phase-boundary region, are less liberated than coarser particles.  This
apparently anomalous result can be incorporated into the models of the attainable region as a shallow
peak in the intermediate grade classes at the finest progeny sizes.  This shows up as a slight bulge
in these classes in the lowest rows of the Anrews-Mika diagram shown in Figure 2.

CALCULATED RESULTS - RANDOM FRACTURE

Twelve Andrews-Mika diagrams for the region R were generated using the model developed by
Schneider and two typical diagrams are shown in Figures 2 and 3.  The remaining diagrams are
similar in character and are not shown here.  The diagrams in each of the feeder regions were
constructed from the complete set of attainable region diagrams using equation (18).  Typical feeder
regions with typical attainable regions are illustrated in Figures 2 and 3.   The average selection
function Sj was calculated using the usual Austin form

Sj 

a d�

p

1 �

dp

)

� (30)

and under the random fracture assumption, this selection function is independent of particle
composition.

The size breakage function was calculated using
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The liberation spectra, calculated using equation (25) are shown in Figure 4 after 10 minutes
grinding of a monosize feed larger than the “liberation” size of the ore.  The feed in this case was
monosize unliberated material of average grade 36.8% mineral.  The results shown in Figure 3 are
plotted as conditional liberation spectra at each size.  In other words the spectra are normalized so
that they sum to unity at each size. The conditional liberation spectra do not change significantly
with grinding time after the initial transient has died out.  This results from the constraint imposed
by equation (29).  The average concentration of mineral phase does not vary with size in the product
from the batch mill when random fracture is assumed. 

CALCULATED RESULTS - NON-RANDOM FRACTURE

The general solution equation (19) can be used to illustrate the effect of non random fracture.   Non
random fracture can be caused by several effects as discussed in a previous section.  The effects of
selective breakage, preferential breakage and differential breakage are illustrated here.

Selective breakage can be simulated by defining the brittleness of each mineral species and modeling
the selection function in terms of the brittleness ratio, br, as follows (King 1994,  Middlemiss and
King 1996).

Sij 

2 gi � (1	gi )br Soj

1 � br
(32)

Here  is the average selection function of the ore at size class j which can be calculated, forSoj

example, using an Austin model (equation (30)). 

Preferential breakage occurs when growing cracks branch more readily in one of the mineral phases.
This mineral will appear preferentially in the smaller size classes during any elementary fracture
event and its effects can be simulated by appropriate modifications to the internal and boundary
structures of the attainable region.  In particular the conditional mean

ḡjkl 
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can be allowed to vary appropriately with progeny size while still satisfying the required condition
of equation (13) in discrete form namely
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Schneider (1995) has proposed a useful model for this variation
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Experimental data suggests a function of the form
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The sign in equation (35) is selected depending on whether preferential breakage occurs in the
mineral (+) or the gangue (-). The parameter  can be easily adjusted to ensure that equation (36)�0

is satisfied once the size breakage function has been established.

EXPERIMENTAL RESULTS

A monosize sample of ball mill feed was prepared from samples collected on an operating plant.
This was used as the starting material for the batch mill test in a 25 cm diameter laboratory batch
mill.  Separate batch grinding experiments were run for 10, 20 and 30 minutes respectively.  The
products from the mill were screened and each screen fraction was sampled, mounted, sectioned and
polished prior to image analysis using SEM with back-scattered electron detection as the image
source.  The linear intercept method was used to determine the distribution of linear grades in each
size fraction.  The linear grade distributions were stereologically corrected using the entropy
regularization method (King and Schneider, 1998) to yield the experimental distributions .  Thepij

results are shown in Figure 5.

Evidence of selective fracture was clearly visible in the liberation spectra measured after 10 minutes
of grinding.  Residual particles in the feed monosize and the sizes just smaller than the feed  showed
a definite shift to higher mineral grades during grinding indicating that the gangue was more brittle
than the mineral phase and was breaking selectively.  The batch equation was accordingly solved
using a brittleness ratio of 0.5 and the calculated liberation spectra are shown in Figure 6.

The measured mineral concentration at each particle size is shown in Figure 7 .  The decrease in the
average grade as the particle size decreases is typical when the gangue is more brittle than the
mineral phase.  The concentration of mineral is larger than the original feed concentration in the feed
monosize and in the size fractions immediately below the feed monosize.  At all smaller sizes, the
mineral concentration is smaller than the feed concentration as the more brittle gangue is selectively
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ground and concentrates in the smaller sizes.

The calculated cumulative liberation over all sizes is shown in Figure 8 for equal brittleness of the
two phases and in Figure 9 for a brittleness ratio of 0.5.  There is no difference in these results when
averaged over all sizes showing that there is no cumulative effect of selective breakage.  This
remarkable result shows that, when all sizes in the mill product are taken together, the total liberation
spectrum is not affected by the relative brittleness of the individual minerals.  The size-by-size
variation of average particle composition nevertheless shows a marked variation as shown in Figure
7.

Evidence for preferential breakage of gangue during the comminution of iron ore by slow
compression in a piston and die arrangement has been presented by Fandrich et. al.(1997). This
process, which may seem quite dissimilar to conventional batch milling, can nevertheless be
described by the batch comminution equation if the progeny are subject to sequential rebreakage
after initial breakage of individual particles.   The Schneider model of the attainable region was
modified using equation (35). Fandrich et. al. also found evidence of differential breakage by
measuring the variation of the size breakage function bj,kl with particle composition and they modeled
this effect using a truncated log normal model for the breakage function.  Their model for the size
breakage function was used here and the variation of particle grade with particle size in the product
was calculated for the five monograde-monosize feeds that were used in their experiments.  The
calculated results are compared with the experimental data in Figure 7.  It is clear that the theoretical
model is capable of describing the effects of preferential and differential breakage satisfactorily.

CONCLUSIONS

The general solution to the multicomponent batch comminution (equation (19)) can be used to
calculate the liberation spectra as a function of particle size in the products from a batch grinding
mill.  Both random and non-random breakage effects can be modeled.  Selective breakage can be
simulated by modeling the effect of unequal mineral brittleness on the selection function.
Preferential breakage can be simulated through its effect on the internal and possibly also on the
boundary structure of the attainable region. Differential breakage can be simulated using
experimentally determined variations in the size breakage function with parent particle composition.

The selective breakage model use here (Equation 32) is only a tentative attempt to examine the
consequence of selective breakage.  A considerable amount of careful experimental work will be
required to quantify all the effects of non-random fracture.  (See Choi et. al 1988 for example).

The solutions developed in this paper provide effective methods for the determination of the
essential parameters to model the effects of mineral liberation in industrial grinding mills.

The mode of stress application in the grinding mill can influence the liberation characteristics of an
ore.  Fandrich et. al. (1997) for example have put forward an interesting argument for increased
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selective breakage when a particle is stressed within a constrained particle bed as opposed to
stressing between two metal surfaces.  Factors such as this must be taken into account when
transferring model parameters determined in laboratory experiments to plant scale operations.
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APPENDIX - CONDITIONS THAT ENSURE CONSERVATION OF EACH SPECIES

The average grade of mineral in the total population of particles in the batch mill must remain
invariant with time to ensure conservation of mass of each species.  Thus

0

0tP
�

0 P
1

0
gp(g,D) dg dD 
 0 (39)

Equation ( 8) can be written in differential form as 

0p(g,D;t)
0t


 	S(g,D)p(g,D;t) � P
R1
Pb(g,Dg1,D1)S(g1,D1)p(g1,D1) dg1 dD1 (40)

Multiplying this equation by g and integrating gives

0

0tP
�

0 P
1

0
gp(g,D)dg dD 
 	P

�

0 P
1

0
gS(g,D)p(g,D) dg dD

� P
�

0 P
1

0
S(g1,D1)p(g1,D1)P

g��

g� P
D1

0
gb(g,Dg1,D1) dD dg dg1 dD1

(41)

A sufficient condition for equation (39) to be satisfied is therefore

P
g��

g� P
D1

0
gb(g,Dg1,D1 ) dD dg 
 g1 for all g1 and D1 (42)

g* and g**  represent the left and right hand boundaries of the attainable region at each value of D
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Figure 1 Boundaries of the Andrews-Mika diagram showing both the feeder region R1 and the attainable region R.
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Figure 2 Internal structure of a typical Andrews-Mika diagram showing both the feeder and attainable regions.  The
feeder region is indicated by the shaded bars in the upper half of the diagram and the attainable region is indicated
by the unshaded bars in the lower half of the diagram. The height of each bar in the feeder region represents the
conditional multicomponent breakage function b7,10kl where k and l represent any parent bar in the feeder region.
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Figure 3 Internal structure of a typical Andrews-Mika diagram showing both the feeder and attainable regions.  The
feeder region is indicated by the shaded bars in the upper half of the diagram and the attainable region is indicated
by the unshaded bars in the lower half of the diagram. The height of each bar in the feeder region represents the
conditional multicomponent breakage function b4,10kl where k and l represent any parent bar in the feeder region.
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Figure 4 Calculated liberation spectra after 10 minutes of batch grinding.  These spectra do not change significantly
with grinding time after an initial transient period.
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Figure 5 Measured liberation spectra after 10 minutes grinding of an iron ore.
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Figure 6 Calculated liberation spectra after 10 minutes grinding using the Andrews-Mika diagram for this ore and
assuming a brittleness ratio of 0.5
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Figure 7 Calculated variation of average grade with size compared with measured data of Fandrich et. al.(1997). 
Calculated values show the effects of preferential and differential breakage (filled symbols) and the effect of
selective breakage(open symbols).
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Figure 8 Calculated cumulative liberation distributions averaged over all sizes at 5 different grinding times with no
selective breakage.
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Figure 9 Calculated cumulative liberation distributions averaged over all sizes at 5 different grinding times with 
selective breakage of the gangue.


